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Summary. The electronic spin density, which determines the observed Fermi con- 
tact hyperfine splitting, is usually represented by a delta function operator at the 
nucleus. Approximate wave functions determined by overall energetic considerations 
may show large errors for such a highly localized property. Hiller, Sucher, and 
Feinberg (HSF) have shown that the delta function operator can be replaced by 
a global operator. The possibility that this may lead to an improved method for 
calculation of the spin density is examined for the ground and first excited states 
of the lithium atom. Particular attention is given to simple spin polarization wave- 
functions that provide the leading contributions to the spin density. It is found that 
the delta function and HSF formulations give very nearly the same results when the 
wavefunctions are determined by essentially exact numerical methods. However, the 
HSF approach shows clear advantages in calculations carried out with finite Slater 
or contracted Gaussian type basis sets. 
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Introduction 

Theoretical calculation of Fermi contact hyperfine splitting is an important yet dif- 
ficult problem. The observed hyperfine coupling constant for a magnetic nucleus is 
proportional to q(0), the electronic spin density at the nucleus, i.e., p~(0) - pp(0). 
This can be expressed as an expectation value over the normalized electronic wave- 
function 7 ~ by using the delta function operator as 

q~(O) = (~l~O(ri)2szil ~) ,  
i 

where summation is carried out over all electrons i, with eigenvalues of the oper- 
ator szi being +1/2 for c~- and - 1 / 2  for /?-spin electrons (LS coupling is assumed 
throughout this work). However, in practice this formulation is subject to consid- 
erable error since approximate wavefunctions are usually determined by methods 
designed to accurately represent global properties of the exact wavefimction, i.e., 
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energy or moments, and may still be inaccurate for such a highly localized property 
as the amplitude at a nucleus. 

Hiller, Sucher, and Feinberg (HSF) have recently [1] demonstrated that the lo- 
calized delta function operator may be replaced by a global operator. Sucher and 
Drachman [2] and Harriman [3] have pointed out the extension of this idea to deter- 
mination of spin density. These works show that the spin density can alternatively 
be obtained from the expression 

• r3 J 

where V is the potential energy operator appearing in the total nonrelativistic Hamil- 
tonian and L 2 is the total orbital angular momentum operator for the ith electron. 
When evaluated with an exact eigenfunction of the total Hamiltonian, qa(0) and 
qHSF(0) give identical results. For an approximate wavefunction, the use of a global 
operator in qHSF(0) may give an improved calculation of hyperfine splitting. Bal- 
ancing this potential advantage is the drawback that the HSF formulation is more 
complicated to implement than the delta function, particularly since difficult two- 
electron terms appear in the potential energy part of the operator. 

The HSF formulation has been tested in several previous spin density studies. 
For the hydrogen atom approximated with various Gaussian basis sets, HSF ex- 
pectation values showed [3] errors smaller by an order of magnitude or more than 
those from the traditional delta function calculation of q(0). For the ground state of 
lithium atom treated by a sequence of configuration interaction wavefunctions based 
on Slater type orbitals [4], qHSF(0) had consistently lower errors than qa(0), and 
HSF also showed much improved convergence behavior with respect to enlargement 
of the configuration list. It has been proven [5] that qa(0) and q~SV(0) give identical 
results within the unrestricted Hartree-Fock (UHF) method, provided that the exact 
UHF wavefunction is used. In the same work [5], calculations on excited helium 
and ground state lithium, nitrogen, sodium, and phosphorous atoms using the UHF 
method approximated with Slater type orbitals showed generally better results with 
HSF than with the delta function. Calculations on the ground state first-row atoms 
boron, carbon, nitrogen, oxygen, and fluorine and on methyl radical using the UHF 
method with Gaussian type orbitals [6] gave mixed behavior, with qHSF(0) most of- 
ten but not always agreeing better than qa(0) with the exact numerical UHF results. 
HSF was also found [7] to be much superior to the delta fimction in small Gaus- 
sian basis set treatments of H +. For Bell radical, singles plus doubles configuration 
interaction calculations with Gaussian basis sets [7, 8] showed good performance 
for HSF spin densities, but unfortunately no direct comparisons with delta function 
results were provided. 

Cioslowski and Challacombe [9] have recently shown that use of the HSF iden- 
tity to determine the charge density at all points in space may lead to a total density 
that asymptotically falls off too slowly to be integrable. A similar statement will 
apply to the spin density. This is not a concern for contact spin density calcula- 
tions in atoms, as in this work, since we are considering only the amplitude at the 
nucleus. Whether or not this will have an adverse effect in calculations on large 
polyatomic radicals remains to be seen. 

It may be noted that most of the previous studies reviewed above have utilized 
UHF wave functions. However, UHF spin densities do not agree well with experi- 
ment for many atomic [10] and molecular [11] systems, even with spin projection 
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modifications [11]. Closely related spin polarization (SP) wavefunctions can be eval- 
uated by augmenting spin-restricted open-shell Hartree-Fock (ROHF) configurations 
with single-excitation configuration interaction (SCI). By not attempting to consider 
the more complicated effects of dynamical electron correlation, this approach retains 
the virtues of simplicity of interpretation and ease of evaluation. Such SP wave- 
functions have shown considerable promise for delta function evaluation of the spin 
density in various atomic [12-14] and molecular [11, 14, 15] applications. It is 
therefore of interest to examine the accuracy of HSF spin densities in connection 
with SP wavefunctions. This work is the first step in a planned comprehensive study 
of that topic. 

We treat here the ground 2S and first excited 2p states of the lithium atom. 
To determine the inherent accuracy obtainable within the simple SP wavefunction 
model, without ambiguities arising from questions of basis set incompleteness, we 
first evaluate the wavefunctions with essentially exact numerical grid methods. Then 
basis set considerations are examined, both with Slater and contracted Gaussian type 
orbital (STO and CGTO) expansions. 

It is not necessary to review here the huge number of previous delta function 
spin density calculations on lithium. A comprehensive bibliography of ground state 
determinations carried out previous to about 1973 is available [16]. Leading ref- 
erences to more recent sttldies on both the ground and first excited states may be 
found in the report by Sundholm and Olsen [17], which describes the most ambi- 
tious multiconfigurational calculations undertaken to date. 

Wavefunctions 

The ROHF wavefunction for the lithium atom ground state is a single determinant 
of the form 

~ROHF = l1 s l S  2S Ctflel, 

where I... I implies antisymmetrization. The core pair of electrons are constrained 
to occupy identical l s  spatial orbitals. The I s  and 2s  orbitals are freely taken as 
mutually orthonormal and are determined by a self-consistent-field (SCF) optimiza- 
tion to minimize the total electronic energy [18]. The "direct" contribution to the 
total spin density is defined here to be simply the result determined from the ROHF 
wavefunction alone. For the delta function this reduces to simply {2s(0)} 2, which 
is clearly the direct contribution solely due to the unpaired electron. 

Indirect contributions from the core electrons arise from spin polarization, which 
is introduced in this context by adding another configuration to the wavefunction 
[19] 

~/ISP--SCI = Co I[tROHF _]_ C1 I/.tS. 

Here '//s corresponds to a I s  ~ s* single excitation 

7 's = I l s s*  2 s { 2 ~  - ~f le  - f l~e} / v /6 I  

and Co, C1 are linear variational coefficients. In practice, the normalized s* spin 
polarization orbital may be originally produced as a linear combination of all the 
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Table 1. Spin densities determined numerically for 28 ground and 2p excited states of lithium atom 

State q~(0) qHSF(0) q(0) 

Direct Spin pol Total Direct Spin pol Total Expt 

28 0.1666 0.0516 0.2182 0.1741 0.0449 0.2191 0.2313 a 
2p 0.0000 -0.0161 -0.0161 -0.0013 -0.0151 -0.0163 -0.0170 b 

a Ref. [23] 
b Ref. [25] 

virtual orbitals available within the given basis set, after which it may easily be col- 
lapsed to the simpler single configuration form indicated above. The other possible 
independent doublet spin coupling for the l s  ~ s* single excitation is expected to 
make only a small contribution due to Brillouin's theorem [20] and so is neglected 
here. We define here the spin polarization contribution to the spin density to be sim- 
ply the difference between the full value obtained from the SP-SCI wavefunction 
and the direct contribution from the ROHF wavefunction. 

Here, and throughout the remainder of this paper, 2p excited state wave functions 
can be obtained from the 2S ground state case by simply substituting 2p for the 
2s orbital. Since 2 p  has a node at the nucleus, the delta function approach gives a 
direct contribution of exactly zero for the excited state and the full SP-SCI value 
of the spin density is then due only to spin polarization effects. 

A further refinement can be made to the excited state (but not the ground state 
due to spatial symmetry considerations) by adding another configuration to describe 
orbital polarization 

I//SOP--SCI ~- CO ~ROHF ~_ C1 t/ts + C2 Iir/d ' 

where ~ga corresponds to a Is  ~ d* single excitation 

7 *a = [P{ls  d* 2/)} {2aefl - c~fle - flc~cqx/6}l. 

Here the operator P projects the spatial orbital product into an L 2 eigenfunction with 
L = 1. In principle, still another orbital polarization configuration can contribute, 
corresponding to the other possible spin coupling of the three "unpaired" electrons 
in ~ga. However, explicit testing has shown its coefficient to be nearly two orders of 
magnitude smaller than Cz, so the other possible orbital polarization configuration 
is neglected in this work. 

Essentially exact numerical wavefunctions were determined with Fisher's pro- 
gram [21] and additional programs were written to numerically evaluate the relevant 
HSF operator integrals. For the case of finite STO and CGTO basis sets, wavefunc- 
tions were obtained with the MOLE program [22]. Additional programs were written 
to analytically evaluate atomic integrals for the HSF operator over STO and CGTO 
functions. The two electron part of the HSF operator was evaluated through expan- 
sion of 1/r12 in spherical harmonics. Full details of each basis set are given below 
in connection with discussion of the corresponding results. 

All spin densities in this paper are given in atomic units. 
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Results and discussion 

Numerical calculations 

As a test of the wavefunction model, exact numerically determined spin densities 
are compared to experiment in Table 1. For the 2S ground state, the direct ROHF 
contribution provides a substantial fraction of the total. The spin polarization cor- 
rections included in SP-SCI give significant additional contributions that then lead 
to agreement within 5~5% of experiment, with HSF performing slightly better than 
the delta function. For the 2p excited state, ROHF gives a result of exactly zero 
with the delta function and a nonzero but still very small result with HSF. With 
spin polarization included, the excited state results agree within 4-5% of experiment 
with HSF again slightly better than the delta function. 

These results are very close to multiconfigurational SCF numerical results both 
for the ground and excited state. In these SP-MCSCF calculations the Is and 2s 
orbitals were variationally optimized along with the s* orbital, rather than carried 
over from ROHF. For the ground state the delta function result changes 1% from 
0.2182 for SP-SCI to 0.2210 for SP-MCSCF, and HSF changes 1% from 0.2191 
to 0.2216. Very small changes are found for the excited state, the delta function 
result remaining at -0.0161 and HSF changing from -0.0163 to - 0.0164. 

It is also of some interest to examine the individual terms that contribute to yield 
the net HSF spin density with the SP-SCI wavefunction. For the 2S state, 0.2519 
comes from the one-electron part of V, a smaller -0.0329 from the two-electron 
part of V, and exactly zero from the L 2 term. The net result for the ground state is 
then dominated by the contribution from the one-electron part of V. for the 2p state, 
0.0316 comes from the one-electron part of V, -0.0293 from the two-electron part 
of V, and -0.0186 from the L 2 term. Here the contributions from the one- and 
two-electron parts of V nearly cancel one another and the net result for the excited 
state is close to that from just the L 2 term. 

Orbital polarization corrections were also evaluated for the 2p state using the 
SOP-SCI wavefunction, leading to final results of -0.0158 for the delta function and 
-0.0161 for HSF. Compared to SP-SCI, this represents slightly worse agreement 
with experiment for both delta function and HSF approaches, and HSF remains 
a little closer to experiment than the delta function. However, in both cases the 
spin density correction due to orbital polarization is very small, about 2%, and 
consequently will not be considered any further in the remainder of this paper. 

Slater basis sets 

To evaluate the efficacy of various finite basis sets, it is most meaningful to compare 
with the corresponding numerical results rather than with experiment. This removes 
attention from the inherent accuracy of the wavefunction model, which has already 
been assessed above, and allows more immediate comparison to the limiting values 
that would be obtained if a complete (infinite) one-particle basis set could be used. 

First we consider the results in Table 2 for the 2S ground state obtained with 
STO basis sets. The smallest set, abbreviated [4s], is the double zeta (is, ls', 2s, 2s I) 
set with exponents optimized for the ROHF ground state energy by Clementi [26]. 
With this, the delta function approach has an error of less than 1% in the direct 
contribution but has a larger 13% error in the spin polarization contribution that 
leads to a net 3% error in the total result. The HSF approach is nearly exact 
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Table 2. Spin densities with STO basis sets for 2S ground state of lithium atom 

Basis set q~(O) qttSF(o) 

Direct Spin pol Total Direct Spin pol Total 

[4s] 0.1675 0.0582 0.2258 0.1742 0.0459 0.2201 
[6s] 0.1674 0.0571 0.2246 0.1743 0.0457 0.2200 
[10s] 0.1666 0.0523 0.2189 0.1741 0.0450 0.2191 
[8s] 0.1667 0.0516 0.2183 0.1741 0.0449 0.2190 

Numerical 0.1666 0.0516 0.2182 0.1741 0.0449 0.2191 

Table3. SP-SCI spin densities with STO basis sets for 2p 
excited state of lithium atom 

Basis set qa(0) qHSF(0) 

[2s2p] -0.0286 -0.0212 
[3s2p] -0.0160 -0.0144 
[2s4p] -0.0149 -0.0106 
[4s6p] -0.0196 -0.0174 
[6s6p] -0.0165 -0.0164 
[4s5p] -0.0152 -0.0154 

Numerical -0.0161 -0 .0163 

for the direct contribution and has only a small 2% error in the spin polarization 
contribution that leads to a net error of  well under 1% in the total result. Compared 
to the [4s] set, the larger (Is, Is I, 2s, 2s ~, 2s', 2s m) set [27], abbreviated [6s], treats 
the core region in nearly the same way while providing an improved description of 
the valence region. The spin density results, however, are changed very little. 

This suggests that further improvements should be sought in the core region, or 
perhaps the very diffuse part of the valence space. Accordingly, a large [10s] basis 
was constructed by augmenting the [6s] basis with both tight and diffuse ls and 2s 
functions, the exponents being determined by geometric continuation of the nearest 
exponents found in the [6s] set. This is seen to bring the delta function results 
into very close agreement with the numerical ones, and to make the HSF results 
essentially exact. Finally, a somewhat different (is, 3s, 3s ~, 3s", 3s m, 3s" ,  3s mH, 4s) 
set [28], abbreviated [8s], that was constrained to satisfy the nuclear cusp condition 
and optimized specifically for delta function spin density calculation of the ground 
state, was tested. This leads to essentially exact results for both formulations. 

Overall, the STO spin densities for the ground state are in very good to excellent 
agreement with the numerical ones, and HSF generally performs better than the delta 
function. 

Spin densities for the 2p excited state obtained with STO basis sets are given 
in Table 3. No ROHF results are listed since, as discussed above, they are exactly 
zero for the delta function and are always very small (less than I-0.0031) for HSF. 
Analogs of  the above described [4s], [6s], and [10s] sets, abbreviated [2s2p], [2s4p], 
and [4s6p], respectively, were generated by simply replacing all the 2s with 2p 
fimctions of the same exponent. The [2s2p] set is seen to give a huge 78% error 
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with the delta function and a large 30% error with HSF. Improvement of the p 
space description with the larger [2s4p] basis leads to a smaller - 7 %  error with 
the delta function but a still large - 3 5 %  error with HSF. Further improvement of 
the both the s and p space descriptions with the [4s6p] set, however, leads to a 
larger 22% error for the delta function, indicating that the better performance of 
[2s4p] was simply fortuitous, and to a smaller 7% error for HSF. 

It is of interest to track down the reason for the poor results obtained with 
the small [2s2p] and [2s4p] sets. Since all the 2s functions were converted to 
2p in those bases, it was suspected that the problem may be primarily due to an 
inadequate description of the s* spin polarization orbital, which is more diffuse than 
the Is orbital that it polarizes. To test this idea, a small [3s2p] set was constructed 
[29] that includes one additional s function in the outer core-inner valence region. 
This leads to an essentially exact delta function result, which again is probably 
fortuitous, and a moderate - 12% error with HSF, thus supporting the hypothesis. 

The [4s6p] set was further extended to [6s6p] by including two even more 
diffuse Is functions, with exponents determined by geometric continuation [30]. This 
now leads to a small 3% error with the delta function and an essentially exact result 
with HSF. Finally, a somewhat different (ls, 3s, 3s', 3s", 2p, 4p, 4p', 4p H, 4p"') set 
[28], abbreviated [4s5p], that was constrained to satisfy the nuclear cusp condition 
and optimized specifically for delta fimction spin density calculation of the excited 
state, was tested. This leads to moderate errors of about - 5 - 6 %  for both the delta 
function and HSF formulations. 

Overall, the STO spin densities for the excited state range from poor to excellent 
agreement with the numerical result. HSF again generally performs better than the 
delta function, with certain accidental exceptions. 

Gaussian basis sets 

Results for the 2S ground state with CGTO basis sets are given in Table 4. The 
first four bases examined were from the Pople group. Note that the p functions 
in these bases are irrelevant here, since only the s part is probed by ground state 
calculations with the simple SP-SCI wavefunction. The smallest basis examined is 
the standard 3-21G split valence set [31]. With this, the delta function approach 
shows a modest - 5 %  error in the direct contribution but gives a near zero result 
for the spin polarization correction, leading to a large net - 2 6 %  error in the total 
result. With the HSF approach the 3-21G basis shows a significant 16% error in 
the direct contribution and again gives a near zero result for the spin polarization 
correction, the former overestimate accidentally leading to a reasonably small - 7 %  
error in the total result. Adding diffuse functions to produce the 3-21÷G set [32] 
produces only small changes in any of the results. The 6-31G set [33] is still of  split 
valence quality, but is constructed from a larger number of primitive functions that, 
in particular, should give an improved description of the ROHF orbitals. However, 
it gives larger errors in the direct contributions, 17% for the delta function and 19% 
for HSF, and still essentially zero spin polarization corrections, the overestimated 
direct contributions again leading to fortuitously small errors of - 1 0 % in the delta 
function and - 5 %  in the HSF total results. 

From the near zero spin polarization contributions, it may be surmised that 
the CGTO basis sets described above are deficient in variational flexibility in the 
outer core-inner valence region needed for proper description of the s* orbital. The 
6-311G set [34] that was optimized to describe electron correlation effects has been 



346 V.A. Rassolov and D. M. Chipman 

Table4. Spin densities with CGTO basis sets for 2S ground state of lithium atom 

Basis set q~(O) qHSF(o) 

Direct Spin pol Total Direct Spin pol Total 

3-21G 0.1588 0.0016 0.1604 0.2019 0.0022 0.2041 
3-21+G 0.1601 0.0016 0.1617 0 . 2 0 3 5  0.0022 0.2056 
6-31G 0.1954 0.0000 0.1953 0.2071 0.0004 0.2075 
6-311G 0.1565 0.0621 0.2186 0 . 1 7 5 5  0.0490 0.2245 
(9s) ~ [3s] 0.1801 0.0004 0.1806 0.1844 0.0005 0.1849 
(9s) ---* [4s] 0.1801 0.0459 0.2260 0.1844 0.0406 0.2250 
(10s) ~ [4s] 0.1732 0.0581 0.2313 0.1809 0.0483 0.2292 
(10s) ~ [5s] 0.1720 0.0559 0.2279 0.1790 0.0470 0.2260 

Numerical 0.1666 0.0516 0.2182 0 . 1 7 4 1  0.0450 0.2191 

shown [35] to be of  essentially double zeta quality in the s space, and so may be 
expected to give a better description of  this region. For the delta function, it leads 
to a - 6 %  error in the direct contribution and a much improved but still significant 
20% error in the spin polarization correction, these errors accidentally cancelling to 
give a nearly exact total result. For HSF, it gives a small 1% error in the direct 
contribution and a modest  9% error in the spin polarization correction, leading to a 
small 2% error in the total result. This represents a dramatic improvement over the 
previously examined CGTO bases, with HSF showing somewhat greater reliability 
in the individual contributions than the delta function. 

The Huzinaga (9s) set primitive set [36] was first used as contracted by Dunning 
to a split valence [3s] basis [37], i.e., (9s) --+ [3s]. As with the split valence bases 
examined above, the direct contribution is described reasonably well, with the delta 
function error being 8% and the HSF error being 6%, but near zero spin polar- 
ization contributions are again obtained, leading to errors of  - 1 6 - 1 7 %  in the total 
results. This basis was altered to (9s) ~ [4s] by removing the outermost s member  
from the inner group contraction and allowing it instead to float freely in order to 
provide additional variational flexibility in the outer core-inner valence region that 
should allow fo r  a better description of  the s* polarizing orbital. This modification 
had essentially no effect on the direct contributions but drastically improved the 
spin polarization corrections to show much improved errors of  - 1 0 - 1 1 % ,  leading 
to total results having only 3 -4% errors, with HSF performing slightly better than 
the delta function. 

Using Huzinaga 's  larger (10s) primitive set [36] as contracted by Dunning [38] 
to form a double zeta [4s] basis, i.e., (10s) --+ [4s], improves the direct contributions 
to have errors of  4% and now overestimates the spin polarization corrections by 12% 
for the delta function and 7% for HSF, leading to net results having a 6% error for 
the delta functions and 5% for HSF. FinallY, a (10s) --+ [5s] basis was constructed 
by altering the [4s] contraction to remove the outermost s member  from the inner 
group contraction and allowing it instead to float freely. This reduces the direct 
contribution errors to 3%, the spin polarization correction errors to 8% for the delta 
function and 5% for HSF, and the errors in the total result to 4% for the delta 
function and 3% for HSF. 
Overall, the CGTO spin densities for the ground state with split valence and re- 
lated basis sets give unreliable results, especially for the spin polarization contri- 
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TableS. SP-SCI spin densities with CGTO basis sets for 2p 
excited state of lithium atom 

Basis set qa(0) qI4Sr(0) 

3-21G -0.0053 -0.0063 
3-21+G -0.0052 -0.0064 
6-31G -0.0046 -0.0048 
6-311G -0.0172 -0.0162 
(9s4p) --+ [3s2p] -0.0053 -0.0060 
(9s4p) ~ [4s2p] -0.0186 -0.0178 
(10s4p) ~ [4s2p] -0.0181 -0.0168 
(10s4p) ~ [5s2p] -0.0169 -0.0162 

Numerical -0.0161 -0.0163 

bution, but agree well with numerical results with double zeta and larger sets. There 
are generally only small differences in performance between the delta function and 
HSF, with HSF being consistently slightly better. 

Results for the 2p excited state with CGTO basis sets are given in Table 5. Based 
on the experience with STO basis sets, s functions representing the valence region 
were retained when treating the excited state, following the usual specifications of  
these CGTO sets. As with the ground state, the 3-21G, 3-21G+ and 6-31G bases 
show very large errors in the spin polarization contributions, with HSF being slightly 
better than the delta function. And again the errors are considerably smaller with 
6-311G, being 7% for the delta function and only - 1 %  for HSF. 

The Huzinaga (9s4p) set primitive set [36] as contracted by Dunning to a split 
valence [3s2p] basis [37], i.e., (9s4p) --* [3s2p], also gives very large errors. Al- 
tering the s space contraction as described above to produce a (9s4p) ~ [4s2p] 
double zeta basis considerably improves the results, with a 16% error in the delta 
fimction and a 9% error in HSF. Another [4s2p] double zeta basis was constructed 
by using s functions from Huzinaga's (10s) primitive set [36] as contracted to [4s] 
by Dunning [38], and including the same p functions as just discussed above. This 
(10s4p) ~ [4s2p] set does even better, with a 13% error in the delta function 
and only a 3% error in HSF. Finally, altering the s space contraction of this as 
previously described to give a basis with more flexibility in the outer core-inner 
valence region produces a (10s4p) ~ [5s2p] set that gives very good results for 
both formulations, with a 5% error for the delta function and only -0 .5% error 
for HSF. 

Overall, the CGTO spin densities for the excited state again give unreliable 
results with split valence and related basis sets and show moderate to very good 
agreement with numerical results with double zeta and larger sets. HSF here per- 
forms considerably better than the delta function with all the basis sets that are 
capable of providing reasonable results. 

Conclusion 

Theoretical considerations show that there is no difference between delta function 
and HSF results of  spin density calculations carried out with either the UHF wave- 
function or the exact wavefunction. Numerical results presented in this work fur- 
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ther show that they perform almost equally well for lithium atom with ROHF and 
SP-SCI  wavefunctions, HSF being slightly better. 

With STO sets, HSF performs consistently better overall than the delta function 
in both 2S ground state and 2p excited state calculations on lithium. With CGTO 
sets, HSF performs slightly better than the delta function in the ground state and 
considerably better in the excited state. Although the HSF formulation is clearly 
no panacea for the difficult problem of  spin density determination, these results are 
sufficiently encouraging that further studies on other first-row atoms in progress, 
and subsequent studies on molecular  free radicals are planned as well. 

In conclusion, this study provides a comprehensive comparison o f  delta fimc- 
tion and HSF approaches to contact spin density calculations with spin polarization 
wavefunctions for lithium atom. The results give some support to the possibil i ty 
that the HSF formulation will  provide a significant advantage over the traditional 
delta function approach. 
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